Section 5.4
 The Fundamental Theorem of Calculus I

(1) The Fundamental Theorem of Calculus Part I
(2) The Indefinite Integral
(3) The Net Change Theorem

The Fundamental Theorem of Calculus I (FTC-1)

If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, that is, $F^{\prime}=f$.

Example 1: Evaluate $\int_{1}^{3}\left(x^{2}-6\right) d x$.

The Fundamental Theorem of Calculus I (FTC-1)

If f is continuous on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, that is, $F^{\prime}=f$.

Example 2: Evaluate $\int_{0}^{\pi / 2}(2 \cos (x)-4 x) d x$.

FTC-1: Alternative Formulations

We frequently use the notation $\left.F(x)\right|_{a} ^{b}$ to stand for $F(b)-F(a)$, so that FTC-1 can be rewritten as

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}
$$

FTC-1 says that definite and indefinite integrals are related as follows:

$$
\int_{a}^{b} f(x) d x=\left.\int f(x) d x\right|_{a} ^{b}
$$

$$
\text { Example 3: Evaluate } \int_{1}^{4} \frac{5 x^{2}-\sqrt{x}-3}{\sqrt{x}} d x
$$

Here is another way of writing FTC-1:

$$
\int_{a}^{b} F^{\prime}(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a) .
$$

This version of FTC is often referred to as the Net Change Theorem, because it says that the integral of $F^{\prime}(x)$ - that is, the integral of the rate of change of $F(x)$ - is the net change in F.

Example 4: Water is leaking out of the bottom of a storage tank. The rate of flow at time t (in minutes) is $r(t)=200-8 t$ (in L/min). How much water is lost between $t=5$ and $t=20$?

The statement of FTC-1 applies only to continuous functions, but in fact it can be used to integrate functions whose only discontinuities are a finite number of holes or jumps. For example:

$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{d}^{e} f(x) d x+\int_{e}^{f} f(x) d x+\int_{f}^{b} f(x) d x$ and each the four integrals on the right can be evaluated using FTC.

Warning: FTC-1 cannot be used if $f(x)$ has an infinite discontinuity (vertical asymptote). We will explore this further in MATH 126.

Example 5: The velocity function (in meters per second) for a particle moving along a line is

$$
v(t)=3 t-8
$$

(i) Find the displacement of the object from time $t=0$ to time $t=4$.
(ii) Find the total distance traveled from time $t=0$ to time $t=4$.

